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THE STATIC STABILITY PROBLEMS OF AN
ELASTIC CONTINUUM SUBJECTED TO
FOLLOWER-TYPE LOADING
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Abstract —This study involves the fundamental aspects of stability of elastic systems and its
solutions, and presents a new formulation of the static stability criterion. The purpose of the study
is to show that by using the constructed self-adjoint boundary problem of a deflected clastic
continuum subjected to follower-type loads. a static method of solution may be utilized. To
demonstrate this approach we start with the illustrative examples where we can find either a physical
analogy for determination of self-adjoint equations, or a mathematical determination of these
self-adjoint equations using the Green's integral (for the static solution). Determination of the
coefficients for constructing self-adjoint equations can then be accomplished solving the original
equations.
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NOTATION

coeflicients of applied body and surface traction

coctlicients which define a self-adjoint system of differential equations
bending rigidity (8 = £J)

torsional rigidity (C = GJ,)

distances

modulus of clasticity

modulus of shear elasticity

Bessel function

torsion constant

axial load factor for beam -column (k? = P/ES)

length

distance

intensity of mass

moment factor (1 = (Px)*/BC)

axial foree in beam column (concentrated force)

critical buckling load

components ol perturbations of applied surface traction

intensity of lateral load

“lateral™ surfuce loading

concentrated lateral load

“lateral™ body loading

original displacement

adjoint (sell-adjoint) displacement

rectangular coordinates

coefficients (X = (PI1)/2(BC)"3)

components of perturbed applied body traction

purameters associated with the magnitude of coefficients g, 4, b,,(, bl
Lame's constants of elasticity

parameter associated with the magnitude of body and surface tractions
determinants of Euler critical value of load

expressions for determination of “adjoint™ critical value of load P or y
the Kronecker delta

angle of twist of a bar

angle of twist of a bar of the adjoint problem

stress tensor

determinants of deflections and their derivatives.

1. INTRODUCTION

Determination of the critical load of conservative problems of elastic stability by the
dynamic method is independent of the distribution of mass and determination by the static
method is independent of the distribution of *‘lateral™ load. Dynamic and static methods
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give the same value for the critical load. The critical loads of nonconservative problems are
dependent on the distribution of mass in solution by the dynamic method (Bolotin. 1961).

We expect that in the static method of solution, the critical load has to be dependent
on the distribution of the “lateral™ load.

This assumption may be partially justified by observing that the equations of motion
are the same as the equations of equilibrium under certain “lateral” forces—the reversed
kinetic reactions.

Using a normal static solution, we obtain an expression for deflection without any
indication of a critical load. Using a constructed self-adjoint static method of solution, we
cun obtain a new form for the expressions of deflection and of critical load together. The
expression which defines deflection is identical to the expression we found by normal static
consideration. The expression for determination of the critical load gives us the “adjoint™
critical load which is dependent on the distribution of the “lateral™ load. Note that dynamic
and static methods give different answers for the critical loads.

To illustrate this method of solution. let us consider several problems:

(1) Lateral buckling of a cantilever subjected to a transverse follower force.

(2) A cantilever bar subjected at its free end to a load followed by a point on a bar.
(3) A cantilever bar subjected at its free end to a follower force (Beck’s problem).
(4) The adjoint expression of the phenomenon of reversal of deflections.

2. LATERAL BUCKLING OF A CANTILEVER SUBJECTED TO A TRANSVERSE FOLLOWER
FORCE

As is known, this problem is still unsolved statically. It was, however, solved dynam-
ically by Como (1966). To obtain a solution we split P into vertical ~ P and horizontal
~ Pp(0) components (see Fig. 1). The torque is given by :

Cp’' = P(xu'—u). (n

The bending moment is computed for the lateral disributed load ¢,

y

1X
Bu" = — Pxp+ Pp(0)x— ‘i)—— . (2a)

for the lateral concentrated load Q,

Fig. 1. Lateral buckling of a cantilever subjected to a transverse follower force.
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Bu' = — Pxp+ Pp(0)x—Qx. (2b)

Differentiating (1) and substituting (2a. b} in the result, we have:

forg. @' +np—n‘p0) = —n° 1; for . @ +np—n"p(0) = “'":g-
(3a.b)
where
. (Px)” /-
n°- = (7}-‘61—- and \'= "—[;rf:: . (4)
2/ BC
The boundury conditions being:
D=0 D eM=0; =0 (Hv(H)=0
c <
(5) wly = —~ p? (h: (6) @) = @(0) (5)
and the general solutions are
for PRV St PRV SN Bl WP (60)
org, =/ [_. ECFRVAR S IS B [ ¢ ap’ )

X )
for Q. N = A \\/.\'J;/4(4 1) l.‘\/"-l 1 4(( )+fp(0) % (()b)

and finally

. gl X A
for ¢. (p(m«j [x«:.om ra ’]. for Q. «p(())=g[t—l.()3()4.¥'”./ (0]

I) 4\".4
(7u.b)
. C gl . .
forg, w(l) = PE ;I,;I[l = 2.1558X L), (8a)
C
forQ. u(ly= 8[\/8 1.0304.X "4, (X)), (8b)

Equations {7u,b) and (8a4,.b) do not define a critical load 2. To do so we determine a

distance o, = u(l)/p(0) (sce Fig. 1). (%)
fora. \/1;__ b AS2IS8YY ) dy \/3__ LO304X ()
e Tax T Tl e T it o0t L)

L-107797 1),

{10a.b)
Here distance o, is dependent on P and type of the lateral load. To illustrate the static

method of solution for the determination of critical load, let us compare this problem with
the problem of a cantilever subjected to a transverse force P produced by the tension of a
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Fig. 2. Lateral buckling of & cantilever subjected to a transverse foree produced by the tension of a
cable which always pusses through the point A,

cable which passes through point A (see Fig. 2). This problem was solved statically by
Prandtl (1899).

I we choose distances o, = w(!)/p(0) (Fig. 1) and s = o)/ (0) such that d, = d,, we
obtain conditions for which the second problem is adjoint :

[ f
u()_l(l)_l

o) " oy ¢ (h

Similarly, we can also obtain expression (1) from Green's integral

J 1LLe = O] — ¢ (0)] = LY — (D)9 — (0)]} dx
= [0 =)' =Y ()] — [0 — (DY — (O] [y = u(W(0) —p(0)e(/)) =0, (12)

by substituting the boundary conditions (5) into terms ¢ and ¢.
Here

L{p—¢(0)] = [p=pO)]" +n’[p—@(0)] = 0 (13)
is the left-hand side of egns (3a, b) and
Ly —40)] = [y =y O] +nlYy =y (0)] =0 (14)

15 the self-adjoint differential equation.

The boundary-value problem will be self-adjoint if by virtue of boundary conditions
(5) the integral (12) vanishes for any choice of functions u, ¢ and v, ¢ satisfying these
conditions.

For the case in Fig. 2. the equations of equilibrium of moments can be expressed as
follows:
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P’ —t) = Cy’ (15
e(l)  qx* e(l)

forg. Br"= —Px ¢+P~I——. -5 forQ. Bv" = Px Z x—Q-x.

(16a,b)

The variable v is eliminated from eqns (15), (16a, b) giving the following equations in terms
of ¢ only

Lol A
for gq. dz"+n2¢~n':§3= n'g;. . n*—n -

From eqns (17a.b) we also obtain by substitution ¢{0) = v(){@©)/u()] or ¢(0) = e(/)/d
from (11) to (3a) and (3b) in terms of . The relevant boundary conditions (5) are in terms
of v and ¢. The solutions to these equations. in terms of Bessel functions are:

for q. ¢=A,\/;J.,4( ,,)M I m( ) 'Z‘% g; (18a)
for Q. w=AsJEJ.,4( ,z)w Jxi. ( ") “f’ ¢ s

If we satisfy the boundary conditions, we obtain the characteristic equation for all cases :

i ! e
A= \/I[J (X + ﬁ"z \/8 Jw(X):]- (19)

We rewrite eqn (19) for determination of the critical load

ilv

7 \/CJ‘ ya(X)+J5.(X) = (20)

and deflection
!
forg, Av(l) = .g—’ J1 {J- ra(X[1=2.1558X 34T _y ((X)]
+2XJ,,4{X)[1 —1077978 ‘(X )}} (21a)

or after substituting eqn (19), we rewrite eqn (21a);

32
Pi: [.l (X)) =+ \/'+J,,4(X)]r(1)=%\/}{J_,“(X)[l—2.[558X”‘J-;,4(X)]

+ ZX.}',,‘(X)[! —1.0779 J‘Xfff) ]} ‘% \/jg (22a)

and

SAS 29:20-1
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for 0. Ar(l) = % 1\/% 15 (%) (21b)

or after substituting eqn (19). we rewrite eqn (21b):

d- (B @ C - d, B
\ﬂ[T\/;J-l,a(x)—-ll/c(x)]’-(l)"‘ﬁ[\/;\/l'lJN(X)T\/E‘ (22b)

It should be remarked that ¢(/)/y(0) is given by (10a) and (10b). Because d, = d, = d, we
can substitute expression (10a) and (10b) into eqns (20), (22a) and (22b).

From the characteristic eqn (20) we obtain the following expression for the critical
load:

Jye(X
for q. J_,,4(X)[l—2.!558X"“J_,,4(X)]+2XJ,.(X)[ 1-1.0779 ‘)’(‘,( )]_0, (23a)

and

forQ. Jy4(X)=0. (23b)
Equation (23a) gives us a critical load P for the distributed lateral load ¢
P., = 6.16(BC)' I} (24a)
and eqn (23b) gives us a critical load P for the concentrated load Q
P., = 6.984(BC)" /1. (24b)

Making use of the dynamic analysis for concentrated mass at its free end, Como (1966)
obtained :

P, = 6.99(BC)" */I*. (25)

Deflections :

. Ji(X
for ¢, {L,/4(X)[l—2.1558X’/‘J_3,4(X)]+J,,4(X)2XI:1—1.0779 ';,(/4 )]}

{v([) ﬁ’lf’l—[‘ ~2.1558X74) _ ,,4(,‘()]} =0 (26a)

and
@, /C V4
for Q. J,.(X)| v(l)— }-1 3 1.0304X "4/, 4(X) | = 0. (26b)

Thesc equations are expanded into two expressions. In discussing the solutions of eqns
(26a,b), let us begin with two cases :

(a) As long as the first expression is not equal to zero, the second expression will be
equal to zero and will give a deflection identical to the one found by normal static con-
sideration [see eqns (8a. b)].

(b) If the first expression is equal to zero we can determine the critical load [see eqns
(23a, b)]. Now, because the second expression cannot be zero, the deflection is unstable.
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In conclusion. by applving the adjoint concept of the solution for the problem with a
follower type load. we can determine the critical load by solving the characteristic equations
of the self-adjoint problem. This permits a new form of the expression of the deflection and
critical load together, which we were unable to find by normal static consideration.

The original form of equilibrium is stable only up to a certain force, P. At a force
exceeding this value, which will be termed critical as before, a transition takes place to a
certain new form of instability with ever increasing deflection from the original equilibrium
position,

The stability criterion is the condition for the occurrence of the above form of instability
and is called the adjoint stability criterion.

3. A CANTILEVER BAR SUBJECTED AT ITS FREE END TO LOAD FOLLOWED BY A POINT
ON A BAR

To further illustrate the adjoint method of solution, let us consider a cantilever bar
subjected at its free end to a load followed by point B on a bar (see Fig. 3).

We divide P into vertical ~ P and horizontal ~ Pu(/,)/!,] components.

The differential equation for this case is:

with uniform load q.

I x?
EJu”+Pu~P?—({—'—2x= -‘% (27a)
i

and with concentrated load Q,

!
EJu" + Pu—P "(1 1) x= —Qx (27b)
1
The solutions to these equations are
] 3 2
forg, u= A;sinkx+A,coskx+ i—{%g X - % + k?P (28a)
and
., . ul(ly) Q Y
for Q. u= A;sinkx+ A cos kx+ X P x wherek” = P/EJ {28b)
H
which must satisfy the conditions
ut)] Jp
PP
0 gufhi

o) loteral load q
b) (oteral load G

L
<
x

Fig. 3. The cantilever bar subjected at its {ree end to load followed by point B on a bar.
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u0)=0; ()=0; u(l)) =u(l;) and u{l) = u(l)

for the next case.
From (28a) and (29) we obtain for ¢:

gl sinkl), ] 1<cosk1‘——l 1, /i- !
u(l.)—PI:(l—~———k[ sinkl, —(1,/) ArE +2 kilcos ki 1|smk1,

i ki,-1 1
u(l) = q? [—' (Eﬁ—'—— + E)(sin ki—klcos ki)

I\
I . 1 coskl sinkl 1 [
+l—l5lﬂ/t/|<§-‘k—_z—l—:————kl—'FW)]/Esmk[.

and from (28b) and (29) we obtain for Q:

u(l)) = _Q_ I(sin kl, — 1—'klcos kl)/—l—sin ki
P / l

l
u(ly = %I(sin ki—kicos kl)/ l~sin ki,
1

or generally, for any distribution of lateral load ¢ :
u(ly = klq.kD)/B, (k1).

The characteristic equation for these cases is:

{ ) )
[ sinkl, =0 and P, =n"EJ/I;.

For a small value /, we obtain a large value of critical load P,,. This is impossible.

(29

(30a)

(31a)

(30b)

(31b)

3lc¢)

(32,33)

Let us compare this problem with the problem of a bar with a load P through a fixed

point A (see Fig. 4).

A bar loaded by P through a fixed point A, was solved statically by Feodosyev (1950,

1970).
According to Figs 3 and 4 for d, = ¢, = d we obtain

Lve] Jp
Py P/

v/ P

[»]

a) lateral load q
b) Lateral load @

or

X

Fig. 4. The cantilever bar with load P through a fixed point A.
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u()futh) = v(O)je(ly) = d/l,. (34

After differentiation of the left-hand eqns (27a. b) twice, we obtain a self-adjoint form of
the differential equations:

L(u) = Elf” +Pu” and L(v) = EJo™ + Pv". (35, 36)

We can also obtain expression (34) from Green's integral. using boundary conditions (29)
in terms of v:

J'I [vL(u) —ul(v)]dx = If[v(l)u(l,) —u(De(l)] =0. (37
0 1

We define expression (34) by substitution of (30a) and (31a) for g and (30b), (31b) for
Q. respectively

LY (coskty =t 1\ (1 coski—1 sinkl
d <-[—)<———k—ziz~——+i)(smlxl—lxlcos/\/)+smAh(i- T T kl)

1~ sin kl) . (1,>z(cosk1,—l l)
(l——,:_—[— sink/, — T\t klcos ki

(38a)
f;= ;‘.fl.ﬁfr!fﬂ’i’i! (38b)
i sin kI, -kl cos kl
|
Dividing the force P into vertical and horizontal components (see Fig. 4):
pxp, P20 (39,40)
d;
and rewriting the equations of the elastic curve of the bar:
v(! x? l
for g, EJv"+Pu—P—‘£1—) =-L,  forQ, EN'+Pu-P u )x = —Qx.
2 -
(41a,b)

We can obtain adjoint equations (41a,b) by substituting v(/,) = v(/)({,/d) from (34)
into (37a) and (27b) for d, = dy = d in terms of v.
The conditions (29) also in terms of v. The solutions to these equations are:

2

for q, v=A,sml\t+A,,coskr+—‘-(l:2—q2;+k—?}—,. (42a)
. v Q

forQ. v=A,sinkx+Ascoskx+ p —Fx. (42b)

-

Satisfying the boundary conditions (29), we obtain the characteristic equation for all
cases of lateral load
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!
A= R (k! cos ki —sin ki) — ki cos kl (43)

or for determination of critical load :

kilcos ki—sin ki — 51-[-2- kicoskl=10 (44)
and deflection for ¢:
gl (klcoskl . 1 cos kl)
Av(l) = P ( 5 —sin ki+ i i (45a)
We rewrite eqn (45a) after substitution of (43)
] o dy qi* (klcoskl [ cos fd)d2
[(klcos ki—sin kl) — 7 kil cos kl:lz(l) - —sin kl+ 0w T
(46a)
And for Q.
Av(l) = g H{kl cos kl—sin k). {45b)

We rewrite eqn (45b) after substituion of (43)
. d; Q : d;
kicos kl—sin kl - N kicos kt jo(l) = P {{ klcos kl—sin ki T (46b)

Because d, = d, = d, we can substitute expressions (38a,b) into (44). Now, from the
characteristic eqn (44) we obtain expressions for the determination of the critical load :

i kicos ki | I coskl
for g, E sin !cl,( —sin ki+ i T) = 0, (47a)
I}
for Q, i sin kl, (ki cos ki—sin kl) =0, (47b)
13
or generally, the adjoint characteristic equation is:
A, (khe(kl) = 0. (47c)

Equations (47a, b, c) are expanded into two expressions. From the first expression of
eqns (47a,b), (sin &/, = 0) and of eqn (47¢), [e(k/) = 0] we obtain a critical load exactly
like we found by normal static consideration [see eqn (32)]. The second expression of eqn
(47a) gives us for a distributed load ¢

kicosk! . 1 coskl
3 —sin /J+E— **‘F'-*O (48a)

and an “adjoint™ critical load equal to:
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P, = 16.69EJ/I*. (49a)

The second expression of eqn (47b) gives us, for concentrated load Q.

t_a.z_[_k_l =1, (48b)
and an “adjoint” critical load equal to
P, =20.19EJ/I%, (49b)
and the second expression of eqn (47¢) for any distribution of g
e(kl) =0, (48¢)

which gives us a generally “‘adjoint” critical load. Using the adjoint expression of deflection
with distributed load q. we obtain for d, = d; = d and after substitution of eqn (38a) into
(46a):

kicoski . | coskl ql? I.(coskl.——l 1)._ o
( 2 —Slnl\l+l:_—l—-‘—1(-1‘—){v(l)-—l—)—[7 -—7(—2-[—?——‘1"5 (sin ki~ k! cos k)

l . Il coskl—-1 sinkl I .
+Esmkl.(-2-—- AT )]/[:smkl.}—o. (50a)

and an adjoint expression of deflection with concentrated load Q for d, = d, = d and after
substitution of eqn (38b) into (46b):

Q sinki—klcos k!

(kl cos ki—sin kl)| v(l) - P / | = 0 (50b)
— sin k/,
[
and generally
N3
e(kl)[u(l) - 'f;f'—(k-[}] =0. (50¢)

Equations (50a, b, ¢) are expanded into two expressions. The first expression defines
the “adjoint™ critical load {see eqns (48a, b, ¢)] and the second expression defines deflection,
exactly as we found it by normal static consideration [see eqns (31a,b,c)]. It should be
noted that from eqn (50c), we can obtain another equivalent form:

(g, kl)e(k!
e(kho(l) - t(qu(%Elg—) =0 (st
or finally
o(l) = w(g.kDe(kl) (52)

A, (khye(kl) *

If we cancel out a factor ¢(k/) from the numerator and denominator, we lose the
*‘adjoint” solution. For example, if we write eqn (45a) in the form
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gl (klcoskl .1 coskl //
L(l)——P< 3 —sml\1+k1—-—k1 J

(53)

after substituting eqn (38a) we obtain:

I kl,—-1 1
v(l) = q—F [7' (cL“'—— + E)(sin ki—klcos kl)

+1 e I coski—1 sinkl) (klcoskl g coski—1\/
ST TR ki s TR )

! . kicoski . cos ki —1
Esm “'(T —sin kl— —“——») (54)

This means that if we obtain the equivalent form (52) and go to the “adjoint™ form (50c¢)
instead of canceling out, we will obtain an adjoint solution.

4. A CANTILEVER BAR SUBJECTED AT ITS FREE END TO FOLLOWER FORCE [(BECK'S
PROBLEM (1952)]
The solution to this problem can be obtained from the previous case of a cantilever
bar subjected at its free end to a load followed by a point on a bar, when the point on a
bar approaches its free end (f;, — 0, see Figs 3 and 5).

From characteristic eqns (47a, b) we obtain:
kil cos kI os ki -1
for q. kI( “2’“ —sinkl= " o ) =0, (554)
for Q. ki(klcos kl—sinkl) = 0. (55b)

From eqns (52a, b),

kicoskl . cos ki— | (1 l—coskl sinkl
forq,( 5 —smkl————z_?———>[v(1)—q?—<5+ TR )]:0

(56a)

and the adjoint expression of deflection with concentrated load Q is,

[~}

i y PU't®)

(see Fig.3)

a) Llateral load q
b) Llateral lood Q

s LimP 2= pyico)
L~0 '

Fig. 5. The cantilever bar subjected at its free cnd to follower force (Beck's problem).
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in kil
(kI cos ki—sin kI) [::'(I) - —Qﬁx’(cos ki— 5’2 ;‘ )] =0. (56b)

It is a full static solution of the stability of the deflected elastic bar subjected to a follower
type load.

Let us examine the solutions to eqns (56a.b). These eqns are expanded into two
expressions. The first expression defines the “adjoint™ critical load [see also (48a). (49a)
and (48b), (49b)].

Making use of the dynamic analysis for distributed mass, Beck (1952) obtained

P. = 20.05EJ/1". (57
The “adjoint™ critical load is [see also (55a) and solution (49a)] :
P, = 16.69EJ/1". (58)

Making use of the dynamic analysis for concentrated mass M, Dzhenalidze (1958)
obtained

P, =2019EJ/1% (59)

The “adjoint™ critical load. for concentrated load @ is the same [see (49b)].
The second expresston in egns (56a, b) gives us deflection, exactly like that which is
found by normal static consideration.

5. THE ADJOINT EXPRESSION OF THE PHENOMENON OF REVERSAL OF DEFLECTIONS

It is interesting to note that the deflections produced by the two opposite eccentrically
applied compressive forces P on a beam of length { on two simple supports may reverse
direction during a continuous increase in the value of P. It is a purely conservative problem.

The ditferential equation of the elastic curve for this case (see Fig. 6) is:

2 y [2x
v+ ke = k'e(T - l). (60)

The solution of eqn (60) according to the conditions at the ends takes the form

1 +cos k!
g e e N i v Ve (]
t c(cm kx ey sin kx+2x/(/ I)) 61)

or in an cquivalent form

CTf.

)

Fig. 6. The simple supported beam subjected to the opposite eeeentrically compressive force P

A___QD

t
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ki
cos”
r=e¢f coskx— iy - Msink.\'+2.\' (-1 1. (62)

Sin 5 CON 5

where ¢ is an eccentric and k- = P £J. By multiplying the solution (62) by cos (k/;2) and
making corresponding changes. we obtain a final adjoint expression of the detlection:

ki .kl :
Cos - U —c| cos kx—sinkxvtan 5 +2x/({-1) {r = 0. {63)

There are two possibilities for the left-hand side of (63) to become zero. Eithercos (A12) = 0.
which gives for the adjoint eritical load the value

P, =nr"EJL. 64)

or the expression in the brackets may become vero and detine the well known conventional
deflection which does not indicate the real eriical load :

PLo= LT (65)

This sotution of the phenomenon of reversal of detlections makes the coneept of the adjoint
critical load of nonconservative problems more understandable.

6 THE STATIC STABILITY OF AN ELASTIC CONTINUUM

Let us consider an isotropic, homogencous, elastic solid occupying a volume ¥ bounded
by a finite surface 8. 1t will be assumed that on one part of the boundary of the solid S,
the displucements are precribed so as to preclude a rigid body motion. Referring to an
orthogonal Cartesian coordinate system v, (Novozhilov, 1948 Boloton, {961) has obtained
the following equutions for the static boundary-value problem:

o dCu, C e, i L
- ’-u i~ +i' 3 G’u - +;"“! = 0* n “v (66)
Cx, Xy oy, oy

with the following boundary conditions on the surfuce:

. fu . Lo .
by . M ETE, L —p, =0, onS—8,, u, =0, onsS,, (67.68)
iy Oy
where
et = 20,0 20,0 . and O, =01 [ #£ [ 0=], (69, 70)
1) 1 ' 1t t . .

In eqns (66), (67) &, is the displacement vector measured from the undisturbed state
and #, 1s the outward positive unit normal vector to 8.5 is a purameter associated with the
magnitude of body and surface tractions. In eqn (69), 2 and g are Lamd’s constants of
clasticity. The repeated indices are summed over the range of their definition and XL p, are
the components of the perturbations of the applied body and surfice traction and their
form will depend on the behavior of the nonconservative forces. They will generally be
homogencous functions of displacement and their derivatives with respect to space. For
this present study. however, it sutlices to restrict X and p, to the following expressions
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pi=au;+p'b, (71.72)

yk 3 a

Cu,
X = 1”1/ uj+ﬂbuk e

where g, b, a,,. b, are coefficients which are independent of the vector u, and its
derivatives but in general are functions of spatial coordinates x;, and «, fi,a’, 8 are
parameters associated with magnitude of these coefficients.

The solutions of the homogeneous system of eqns (66) with the boundary conditions
(67) with (71), (72) give the characteristic equations:

A,(:, 5' a, ﬂ'v Y) =90, (73
and eqn (73) sometimes gives, for some range of coefficients, «, f, 2", §’, the critical value
of y.

If a body and a surface are subjected to the additional “lateral” body loading @, and

surface loading ¢,, by solving nonhomogeneous system of equations, we obtain expressions
for the deflections

_ K,(.’(’k. Y‘ Qi' ql)

e R A TR 74
Y= A B By (74)

and their derivatives

ﬁ):l_,; _ w,(.n.}’. Qn (h)

dx, Aapa By 7

The boundary value problem is self-adjoint if by virtue of the boundary conditions,
the expression

f UcL‘(u!-“IJ‘})dV“‘J uL(v, vs,0,)d¥V (76)
v v

vanishes for any choice of vectors u,, u,, u; and v, v,, v; satisfying these conditions. Here
L; are the left-hand side of eqns (66).
After integrating we have (Bolotin, 1961):

J [l"'X‘(ul.UI,HJ)—'ll,'X,'(Ul,L'z,U])]dV
v
+J‘J; wipuy, uz uy)—u,p(vy,0,03)]dS = 0. (77)

After substituting (71) and (72) into (77) we obtain:

Ju v
L [u,,(v‘u} ~u0;)+ by (U'(?t: —-u,a‘_:)} dv
du v
J‘J. [au(vr“j“'“l”/)+buk(vlar: g 1)] dS=0. (78)

From the well known conditions u, = 0, du;/0x, = 0 and their combinations which can fill
eqn (78}, we have other conditions:
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. . u - -—
<= ={,. underthe body forces. - = -+ ={,. under the surface forces, 2
r, \ v, 2
-3
- - - £
ct, cu, cr, cu, E
¢ Xk ¢ i ¢ Xk ¢ Xk , 2
~— = — = J,. under the body forces, — = — = 3,,. under the surface forces. 2
L-l ul L‘i ul
(79

Now we can determine the relations (79) from the expressions (74) and (73) and they
are dependent oa the disribution of “lateral” loads Q, and g,. These determined relations
(79) provide the possibility to construct a self-adjoint system of equations, which fulfills
conditions (76). (77).

¢ p cr, + ¢ cr, .y 0 . v, + cr, & 0
— Ay — v —\log, — yA.r; =0, i N+ 70, — n,—7vAw0, =0,
ax, \"" oy, / éx, \ *ex, " s axg o T

(80,81)
where

A= 2a, 8+ b3 Ay =2a, L+ B b B (82.83)

Now, because these equations are self-adjoint, we can find the critical value of y. The
expected solutions of this homogencous system of eqns (80) with boundury conditions (81)
are characteristic equations [see egns (23a, b). (47a, b.c), (55a.h)]:

A foa foe(y) = 0. (84)
Equations (84) are expanded into two expressions. From the first expression
Az, .2 fy) =0, (85)

we obtain the critical value of y for some range of coetlicients «, 5, a’, ff, as we found by
normal static consideration [see eqn (73)]. The second expression of eqns (84) gives us the
“adjoint™ critical value of y. If a body and a surface are subjected to the same additional
“lateral” body load Q, and surface load ¢,, the expected solution of deflections are [see eqns
(264, b), (504, b,¢)]:

. , Kl(xk‘ 7 Ql' ‘I.) -
e,(/)[z. YA ) /3’.7)] =0, (86)

or in the equivalent form [see (52) and (54)]:

o K7 Qug) &(7)
“E A B B (87)

It is the expected full static solution of deflected clastic continua subjected to follower type
loads.

Equations (86) arc expanded into two expressions. The first expression gives an
“adjoint™ critical value of y, and the second gives a deflection such as was found by normal
static consideration [see eqn (74)].

We can remark that, eqns (66) with (71) and boundary conditions (67) with (72) arc
identical to eqns (80) and boundary conditions (81). which may be proved as follows.

Equations (80) can be written as:



Static stability problems of elastic continyums 2561

i(. e,-,) é 51) . i
Ex’ Au:ﬁaxﬂ et Ok 3 +yA4,.0,— Txa,t, ,'ﬂ ik T _tk

+y2a; v, ~7Bbix %ﬁ =0; (83)
we observe that
yA.v, —y2a, 0, —7Bb,, :;lé =0, (89)
after substitution,
c’u
G =i—’ and 8, = °—¢‘i (90)

from (79).
Now we obtain eqns (66) and (71) in terms of v. Boundary conditions (81) can be
written as:

cr, o, ., L., ., L.,
Aijapt 5 e YO v n =y +yata e+ 78 bl 7o~ agt;+ 7 b = = 0.
Xp dx, dx,
1)
We observe that
dv,
—yAlv+yl La e+ b =0, (92)
dx,
after substitution,
dv,
I,
ve v, . Uy
by = and ¢ ik = T (93)
v; v

from (79) to A".

Now boundary conditions (91) have the form of (67) with (72) in terms of ©. We must
remark again that eqns (80) with boundary conditions (81) are self-adjoint, because they
are constructed by conditions (76), (77).

7. CONCLUSIONS

(1) Both sets of differential equations and boundary conditions give the sume expression
for deflection.

(2) Only a self-adjoint set of differential equations and boundary conditions can give
an expression for the critical load.

(3) The adjoint method complements the static method of solution (divergence).
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